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RESUMO 

 

Os manguezais são ecossistemas que desempenham um papel fundamental em ambientes de 

transição terrestres e marinhos, fornecendo serviços ecossistêmicos cruciais, como proteção 

costeira e mitigação climática através de sequestro de carbono. Porém, encontram-se sob grande 

pressão antrópica. O monitoramento preciso dessas áreas é desafiador por conta da 

complexidade espectral e da dinâmica de marés. Este estudo teve como objetivo analisar a 

eficácia do algoritmo de aprendizado de máquina Random Forest no mapeamento de 

manguezais e classes adjacentes de uso e cobertura do solo na área litorânea do município de 

Conde, Bahia. A metodologia utilizou a plataforma de computação em nuvem Google Earth 

Engine (GEE) para o pré-processamento de imagens Sentinel-2 referentes ao ano de 2023, 

gerando um Mosaico Anual de Mediana para mitigar a interferência de nuvens e as variações 

de maré. Os índices espectrais NDVI e MNDWI foram integrados ao mosaico, formando um 

Stack multi-banda com oito camadas de informação. A classificação supervisionada foi 

executada no ambiente QGIS através do complemento Dzetsaka e validada estatisticamente via 

amostragem aleatória estratificada (plugin AcATaMa). O mapeamento identificou oito classes 

temáticas, alcançando uma Acurácia Global de 92,41% e um Coeficiente Kappa de 0,89. A 

classe de manguezal obteve desempenho excepcional, com uma Acurácia do Produtor de 100%, 

demonstrando que a estratégia de composição temporal (mediana) aliada ao índice MNDWI foi 

eficaz para evitar a omissão de vegetação inundada. Conclui-se que a integração entre dados 

Sentinel-2, índices espectrais e Machine Learning constitui uma estratégia robusta, de baixo 

custo e replicável para o monitoramento de ambientes costeiros tropicais. 

 

Palavras-Chave: Manguezal, Sensoriamento Remoto, Sentinel-2, Random Forest, Google 

Earth Engine. 

 

 

 

 

 

 

 

 



 

ABSTRACT 

 

Mangroves are ecosystems that play a pivotal role at the terrestrial-marine interface, providing 

crucial ecosystem services such as coastal protection and climate mitigation via carbon 

sequestration. Nevertheless, they are subject to significant anthropogenic pressure. Precise 

monitoring of these areas is challenging due to spectral complexity and tidal dynamics. This 

study aimed to evaluate the efficacy of the Random Forest machine learning algorithm in 

mapping mangroves and adjacent land use and land cover classes in the coastal zone of the 

municipality of Conde, Bahia. The methodology utilized the Google Earth Engine (GEE) cloud 

computing platform for the pre-processing of Sentinel-2 imagery for the year 2023, generating 

an Annual Median Composite to mitigate cloud interference and tidal variations. The spectral 

indices NDVI and MNDWI were integrated into the composite, forming a multi-band Stack 

with eight information layers. Supervised classification was executed in the QGIS environment 

using the Dzetsaka plugin and statistically validated via stratified random sampling (AcATaMa 

plugin). The mapping identified eight thematic classes, achieving an Overall Accuracy of 

92.41% and a Kappa Coefficient of 0.89. The mangrove class exhibited exceptional 

performance, with a Producer's Accuracy of 100%, demonstrating that the temporal 

composition strategy (median) combined with the MNDWI index was effective in preventing 

the omission of flooded vegetation. It is concluded that the integration of Sentinel-2 data, 

spectral indices, and Machine Learning constitutes a robust, low-cost, and replicable strategy 

for monitoring tropical coastal environments. 

 

Keywords: Mangrove, Remote Sensing, Sentinel-2, Random Forest, Google Earth Engine. 
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1 INTRODUÇÃO  

Os ecossistemas de manguezal desempenham um papel fundamental em ambientes de 

transição terrestres e marinhos, fornecendo serviços ecossistêmicos cruciais, como proteção 

costeira e mitigação climática através de sequestro de carbono (TRAN et al., 2022). No entanto, 

a complexidade espectral desses ambientes, frequentemente sujeitos à inundação de maré e à 

mistura com outras tipologias vegetais e usos antrópicos, impõem grandes dificuldades para a 

eficácia do seu mapeamento (GHORBANIAN et al., 2021). Diante da perda global acelerada 

desses habitats, estimada em 35% nas últimas décadas (TRAN et al., 2022), torna-se de grande 

importância não apenas o monitoramento, mas a validação de metodologias e técnicas que 

garantam a confiabilidade dos dados gerados remotamente. 

O Sensoriamento Remoto (SR) consolidou-se como a principal ferramenta para este 

monitoramento. Contudo, abordagens tradicionais baseadas em classificação de imagem única 

ou classificadores paramétricos muitas vezes falham em capturar a heterogeneidades dos 

manguezais em cenários complexos (WANG et al., 2019). A evolução recente para plataformas 

de computação em nuvem, como o Google Earth Engine (GEE), e o uso de algoritmos de 

Machine Learning, como o Random Forest (RF), prometem superar essas limitações ao 

processar grandes volumes de dados e integrar múltiplas variáveis espectrais (RODRIGUES et 

al., 2023; SHEN et al., 2023). 

Nesse contexto, o presente estudo propõe analisar a eficácia técnica de uma metodologia 

de classificação supervisionada baseada no algoritmo RF, aplicado a dados do sensor Sentinel-

2. A abordagem investiga o ganho de desempenho proporcionado pela integração do Mosaico 

Anual de Mediana (para mitigação de nuvens e marés) com índices espectrais específicos de 

vegetação e água (NDVI e MNDWI). O estudo busca testar a robustez dessa técnica em 

distinguir manguezal de classes espectralmente similares ou de transição, validando 

estatisticamente os resultados obtidos. 

1.1 CONTEXTUALIZAÇÃO E JUSTIFICATIVA 

A escolha da área litorânea do município de Conde, Bahia, como objeto de estudo, se 

justifica por suas características naturais para o teste da eficácia do algoritmo. Localizada na 

Área de Proteção Ambiental (APA) Litoral Norte, a região apresenta um mosaico complexo de 

paisagens, onde remanescentes de manguezal e formações florestais coabitam com vetores de 
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pressão antrópica intensos, como a silvicultura, agropecuária e expansão urbana (SOUZA et 

al., 2024). 

A justificativa para esta análise está na necessidade de validar métodos que consigam 

operar com precisão em cenários de conflito de uso do solo. Estudos recentes na região indicam 

que a paisagem de Conde sofreu transformações contínuas entre 1985 e 2022, com a 

substituição de vegetação nativa por mosaico de uso agropecuário e pressão da especulação 

imobiliária (SOUZA et al., 2024). Essa dinâmica torna a área ideal para testar se a técnica 

proposta consegue discriminar corretamente o manguezal de áreas de “confusão”, como 

culturas agrícolas densas ou áreas alagadas não-manguezal. 

Embora o município de Conde tenha sido adotado como unidade de análise e estudo de 

caso, a metodologia desenvolvida encontra certas limitações numa escala municipal. Isto se 

deve à resolução espacial de 10 metros do sensor utilizado, que é mais adequada para análises 

em outras escalas geográficas. A utilização de plataformas de computação em nuvem, por sua 

vez, viabiliza a replicação dessa abordagem em grandes extensões geográficas, tornando-a ideal 

para a gestão de Áreas de Proteção Ambiental (APAs) e para o monitoramento ambiental em 

escalas regional e estadual. 

Além disso, a validação da eficácia do índice MNDWI em conjunto com o NDVI é 

pertinente, já que a literatura aponta a banda do infravermelho de ondas curtas (SWIR) como 

crucial para distinguir vegetação úmida (mangue) de outras formações em ambientes costeiros 

(SHEN et al., 2023). Portanto, mais do que gerar um mapa, este trabalho se justifica pela 

avaliação crítica da acurácia e das limitações do Machine Learning aplicado ao monitoramento 

costeiro do estado da Bahia, contribuindo para o aprimoramento das geotecnologias aplicadas 

à gestão ambiental. 

1.2 OBJETIVOS 

1.2.1 Objetivo Geral 

Analisar a aplicabilidade e o desempenho do algoritmo de Machine Learning Random 

Forest no mapeamento das áreas de manguezal e classes de uso e cobertura do solo adjacentes, 

a partir da integração de dados de Sensoriamento Remoto (SR) Sentinel-2A e índices espectrais 

(NDVI e MNDWI). 
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1.2.2 Objetivos Específicos 

● Identificar as técnicas e ferramentas mais utilizadas para o mapeamento de manguezais; 

● Elaborar um mapeamento de uso e cobertura do solo da zona costeira do município de 

Conde, Bahia; 

● Validar os resultados através da análise estatística e comprovação in loco de áreas que 

são comumente confundidas (zonas de transição). 
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2 REVISÃO BIBLIOGRÁFICA 

Esta revisão bibliográfica analisa a importância ecológica dos manguezais e o papel estratégico 

do Sensoriamento Remoto, especificamente o sensor Sentinel-2, no seu monitoramento. São 

discutidas a integração de índices espectrais (NDVI e MNDWI) ao algoritmo Random Forest e 

as potencialidades da plataforma Google Earth Engine para o processamento em nuvem. 

2.1 MANGUEZAIS: IMPORTÂNCIA ECOLÓGICA E SOCIOECONÔMICA 

Os manguezais representam um ecossistema costeiro único e complexo, reconhecido 

pela sua alta produtividade e relevância global em zonas entre-marés de regiões tropicais e 

subtropicais (TRAN et al., 2022). O valor desses ambientes ultrapassa o âmbito ecológico, 

abrangendo serviços ecossistêmicos essenciais para a sociedade humana e para a estabilidade 

climática do planeta. Ecologicamente, os manguezais funcionam como berçários de 

biodiversidade costeira e são cruciais para a proteção contra perigos naturais (TRAN et al., 

2022). 

A sua importância no contexto das mudanças climáticas é evidente pela capacidade de 

sequestro de carbono. Esses ecossistemas tem a capacidade de armazenar de três a cinco vezes 

mais carbono por área equivalente do que as florestas tropicais em terra firme, devido ao grande 

armazenamento nos seus solos (TRAN et al., 2022). Além disso, a relevância socioeconômica 

dos manguezais está no fornecimento de recursos pesqueiros e na proteção costeira, 

beneficiando comunidades locais (RODRIGUES et al., 2023). Contudo, apesar do seu valor, os 

manguezais tem sofrido perdas significativas (aproximadamente 35% das florestas globais de 

mangue foram perdidas nas últimas cinco décadas), principalmente devido à pressão antrópica, 

como a conversão em aquicultura, agropecuária e expansão urbana (TRAN et al., 2022). 

No contexto brasileiro, os manguezais estão distribuídos ao longo da costa desde Cabo 

Orange, no estado do Amapá, até o município de Laguna, em Santa Catarina (ICMBIO, 2018). 

O país abriga uma das maiores extensões contínuas desse ecossistema no mundo, com uma área 

estimada de cerca de 1.114.000 hectares (MAGRIS e BARRETO, 2010; ICMBIO, 2018). Os 

manguezais brasileiros dividem-se em três gêneros principais, cujo as espécies possuem 

adaptações específicas para sobrevivência em ambientes salinos e solos instáveis. O mangue-

vermelho (Rhizophora Mangle) caracteriza-se pela presença de rizóforos que garantem a 

sustentação da árvore (ICMBIO, 2018). O gênero Avicennia é representado pela espécie 

Avicennia Schaueriana e Avicennia Germinans, conhecidas como mangue-preto ou Siriúba, 



15 

 

que possuem raízes aéreas (ICMBIO, 2018). Já o mangue-branco (Laguncularia Racemosa) é 

identificado pelas glândulas de sal situados na base do pecíolo das folhas (ICMBIO, 2018). Em 

zonas de transição para a terra firme, ocorre também o mangue-de-botão (Conocarpus Erectus) 

(MAGRIS e BARRETO, 2010). 

2.2 SENSORIAMENTO REMOTO APLICADO AO MAPEAMENTO DE MANGUEZAIS 

A complexidade e a dificuldade de acesso no ambiente de manguezal, frequentemente 

hostil e sujeito a inundações de maré, tornam as observações de campo (in loco) limitadas em 

escala e de custo elevado. Neste cenário, o SR surge como uma solução de alta eficiência e 

baixo custo para o mapeamento e monitoramento em grandes áreas (WANG et al., 2019; 

GHORBANIAN et al., 2021). O SR tem permitido a coleta de informações sobre a distribuição 

geográfica e as propriedades biofísicas do manguezal, superando as desvantagens dos métodos 

tradicionais (TRAN et al., 2022). 

Na literatura científica, a aplicação de técnicas de SR tem ganhado bastante destaque na 

complexa missão de monitoramento ambiental. Uma das aplicações mais recorrentes é a análise 

espaço-temporal, que permite calcular a dinâmica de perda e ganho de manguezal ao longo de 

décadas. No contexto brasileiro, Miranda e Fonseca (2019) demonstraram a eficácia desta 

abordagem ao mapear a evolução dos manguezais no estuário do Rio Acaraú (CE) entre 1997 

e 2017. O estudo utilizou o SR para identificar não apenas a diminuição da vegetação, mas 

também a expansão de vetores de pressão, como a carcinicultura e a urbanização, fornecendo 

subsídios para o planejamento e gestão territorial de Unidades de Conservação. 

Além da análise espaço-temporal, o SR tem evoluído para a caracterização qualitativa 

do ecossistema. Estudos globais indicam o uso de imagens de alta resolução e algoritmos de 

aprendizado de máquina para discriminação de espécies de mangue e para estimativa de 

parâmetros biofísicos, como biomassa e estoque de carbono (WANG et al., 2019). A 

capacidade de diferenciar tipologias vegetais dentro do mangue é crucial para entender a saúde 

do ecossistema e para sua valorização como patrimônio natural, tendo em vista os diferentes 

serviços ecossistêmicos específicos em diferentes zonas (TRAN et al., 2022; MIRANDA; 

FONSECA, 2019). 

Portanto, a utilização de dados orbitais não se limita apenas à produção de mapas 

estáticos, mas constitui uma ferramenta estratégica para monitoramento remoto e para a 

compressão das tendências que ameaçam esses ambientes costeiros (RODRIGUES et al., 2023; 

MIRANDA; FONSECA, 2019).  
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2.2.1  A Força dos Sensores Sentinel-2 

A capacidade de mapeamento detalhado dos manguezais está diretamente relacionada à 

evolução da resolução espacial das imagens de satélite. Historicamente, as baixas resoluções 

espacial e temporal eram uma barreira para o mapeamento eficiente em ambientes costeiros 

complexos e com alta presença de nuvens  (WANG et al., 2019). No entanto, atualmente o 

sensor Sentinel-2A (Missão Copernicus) fornece dados multiespectrais de acesso livre com 

resolução espacial de 10 metros para as bandas do espectro eletromagnético na faixa do visível 

e do Infravermelho Próximo (NIR) (TRAN et al., 2022). 

Além da resolução espacial, a constelação Sentinel-2A e 2B oferece uma alta frequência 

de revisita de 5 dias, o que aumenta significativamente a chance de obtenção de imagens livres 

de nuvens, permitindo um monitoramento espaço-temporal mais denso e preciso de manguezais 

(WANG et al., 2019). 

A alta resolução do Sentinel-2A é fundamental, pois garante a distinção do manguezal 

mesmo em formações estreitas, contribuindo para uma Acurácia Global (OA) consistentemente 

alta nos mapeamentos (SHEN et al., 2023). Estudos recentes demonstram que, para 

classificação de manguezais, os dados ópticos do Sentinel-2 podem apresentar desempenho 

superior até mesmo quando comparado à dados de Radar de Abertura Sintética (SAR) isolados 

(SHEN et al., 2023). Destaca-se, portanto, a robustez dos dados multiespectrais para essa 

finalidade. 

A sensibilidade do sensor é reforçada pela inclusão de bandas de Infravermelho de 

Ondas Curtas (SWIR), representada pelas bandas B11 e B12, que são cruciais para o 

monitoramento de saúde e teor de água da vegetação (TRAN et al., 2022; SHEN et al., 2023), 

o Sentinel-2 incorpora três bandas na faixa do infravermelho médio. Essas bandas (B5, B6 e 

B7) são particularmente sensíveis à clorofila e ao estresse da vegetação, fornecendo 

informações para análise sobre o estado de saúde e a fenologia dos manguezais, que 

anteriormente só eram capazes a partir de sensor hiperespectrais (WANG et al., 2019; TRAN 

et al., 2022). 

2.2.2 O Uso Estratégico de Índices Espectrais (NDVI e MNDWI) 

A identificação espectral do manguezal é caracterizada pela forte reflectância na região 

do NIR. A Engenharia de Features é o processo de criar novas camadas de informação com 

base nos dados originais e, através do cálculo de índices espectrais, permite aumentar o 



17 

 

contraste e ampliar o poder discriminatório do classificador. Este estudo emprega uma 

abordagem de dois índices, o que agrega à qualidade da classificação, já que o uso de um único 

índice é desafiador para distinguir o manguezal de outros tipos de vegetação terrestre (TRAN 

et al., 2022). 

O Índice de Vegetação por Diferença Normalizada (NDVI) é o índice mais aplicado em 

estudos de manguezais, sendo utilizado em mais de 80% das pesquisas revisadas (TRAN et al., 

2022). Calculado a partir da razão normalizada das bandas do NIR e do Vermelho (Figura 1 - 

Equação 1), ele é de suma importância para quantificar a biomassa e a saúde da vegetação 

(TRAN et al., 2022). No entanto, vale ressaltar que, em áreas de dossel muito denso, o NDVI 

pode apresentar saturação, o que justifica a sua utilização em conjunto com outros índices para 

uma caracterização mais precisa (RODRIGUES et al., 2023). 

 

Figura 1 - Equação do NDVI. 

 

Fonte: Rouse et al. (1974) apud Shen et al. (2023). 

 

Contudo, para diferenciar o manguezal das áreas alagadas e das áreas de lama exposta, 

o Índice de Água por Diferença Normalizada Modificado (MNDWI), é o índice espectral mais 

importante (SHEN et al., 2023). Diferente do Índice de Água por Diferença Normalizada 

(NDWI) tradicional, o MNDWI utiliza a banda do SWIR no lugar no NIR (Figura 2 - Equação 

2). A banda do SWIR é particularmente sensível ao teor de água da vegetação e do solo, 

melhorando a distinção e a acurácia na delimitação em ambientes com forte influência da maré 

(SHEN et al., 2023; DINIZ et al., 2019). 

 

Figura 2 - Equação do MNDWI. 

 

Fonte: Xu et al. (2006) apud Shen et al. (2023).  
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2.2.3 Classificação Supervisionada: Random Forest 

A transição dos métodos tradicionais de classificação para algoritmos de Machine 

Learning resultou em uma melhoria considerável na acurácia do mapeamento. O algoritmo 

Random Forest (RF), em particular, provou ser o mais eficiente e robusto para o mapeamento 

de ecossistemas complexos como o manguezal (GHORBANIAN et al., 2021).  

O RF opera através de técnicas de ensemble learning (aprendizado por conjunto). O seu 

funcionamento baseia-se na construção de uma “floresta” formada por múltiplas árvores de 

decisão independentes (Figura 3). 

 

Figura 3 - Esquema explicativo do processo de decisão do algoritmo Random Forest. 

 

Fonte: SHEN et al. (2023). Elaborado pelo autor (2025). 

 

O algoritmo usa a técnica de agregação Bootstrap para treinar cada árvore com um 

subconjunto aleatório de amostras de treinamento, enquanto o restante dos dados é utilizado 

para validação cruzada interna e estimativa de erro (GHORBANIAN et al., 2021). 

Para determinar a classe final de um pixel, o algoritmo computa a resposta de todas as 

árvores individuais e aplica uma regra de votação majoritária: a classe que receber maior 
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número de votos das árvores é atribuída ao pixel (SHEN et al., 2023). Essa característica o torna 

altamente tolerante à ruídos, robusto e eficaz em evitar overfitting (superajuste), problemas 

comuns em classificadores mais simples que usam apenas uma árvore de decisão  

(GHORBANIAN et al., 2021). 

Uma vantagem adicional do RF é a sua capacidade de integrar múltiplas fontes de dados 

de forma eficiente, como o Stack multibanda usando neste estudo, sem a necessidade de reduzir 

(simplificar) o número de variáveis de entrada (SHEN et al., 2023). A aplicação do RF em 

conjunto com o stack de bandas brutas do Sentinel-2A, somado aos índices espectrais NDVI e 

MNDWI, tem elevados os resultados de alta qualidade com acurácias globais acima de 92% 

(GHORBANIAN et al., 2021; SHEN et al., 2023; RODRIGUES et al., 2023). Estudos recentes 

demonstraram que o RF supera outros classificadores supervisionados tradicionais, como o 

Classification and Regression Trees (CART), apresentando uma menor confusão com classes 

de vegetação adjacente (RODRIGUES et al., 2023). Além disso, a sua eficácia é demonstrada 

em estudos nacionais, justificando a sua escolha como classificador principal (RODRIGUES et 

al., 2023). 

2.3 GOOGLE EARTH ENGINE (GEE) COMO PLATAFORMA DE ANÁLISE E 

MITIGAÇÃO DE EFEITOS DE MARÉ 

A plataforma de computação em nuvem Google Earth Engine (GEE) representa um 

avanço significativo na análise de dados geoespaciais. O GEE facilita o acesso a uma gama de 

dados gratuitos de satélite (como o Sentinel-2A), eliminando qualquer necessidade de buscas 

exaustivas de abertura de nuvem na área de interesse, download e pré-processamento manual. 

Essa capacidade permite a análise de séries temporais em escala regional e global (DINIZ et 

al., 2019; RODRIGUES et al., 2023). 

Para o mapeamento em zonas costeiras, o GEE é crucial na mitigação de ruídos como a 

cobertura de nuvens e, principalmente, a influência das marés. A metodologia de pré-

processamento baseada na composição de Mosaicos Anual de Mediana de imagens de séries 

temporais é a estratégia mais eficiente para lidar com essas flutuações (GHORBANIAN et al., 

2021). 

O redutor de mediana rejeita valores espectrais extremos (nuvens, sombras e, em grande 

parte, níveis instantâneos de inundação), resultando em um pixel representativo da condição 

espectral média do dossel ao longo do ano (DINIZ et al., 2019). Essa abordagem garante que o 
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classificador RF seja treinado com menos dados sob influência de ruídos, aumentando a 

acurácia e a validade do produto final. 

2.4 AVANÇOS E NOVAS PERSPECTIVAS TECNOLÓGICAS 

Embora os índices espectrais utilizados neste trabalho sejam robustos para o 

mapeamento, a literatura atual apresenta novas técnicas e índices desenvolvidos para ampliar a 

discriminação espectral dos manguezais em cenários complexos. Essas abordagens representam 

o estado da arte no monitoramento costeiro e sugerem alternativas para solucionar limitações 

específicas, como a confusão espectral entre alvos. 

Um destaque recente é o Índice de Vegetação de Manguezal (MVI), proposto por 

Baloloy et al. (2020). Diferente dos índices convencionais, o MVI foi desenvolvido 

especificamente para capturar a assinatura espectral única dos manguezais, utilizando as bandas 

do Verde, Infravermelho Próximo e Infravermelho de Ondas Curtas. Segundo os autores, a 

fórmula do MVI busca mostrar a probabilidade de um pixel ser manguezal ao contrastar verdor² 

com a umidade específica desse ecossistema, o que o torna um índice eficiente para distinção 

entre manguezal e outros alvos. 

Outra abordagem que merece destaque é  a análise de séries temporais densas para coleta 

de métricas fenológicas. Estudos como os de Chamberlain et al. (2021) demonstram que, ao 

observar o comportamento dos pixels ao longo de vários anos, é possível identificar ciclos 

sazonais de crescimento e senescência (fenologia). Essa técnica permite distinguir manguezais 

de outras vegetações que possuem ciclos de vida diferentes, além de correlacionar a saúde do 

manguezal com variáveis climáticas, como precipitação, e detectar respostas a eventos 

extremos. 

De maneira adicional, o uso de dados Radar de Abertura Sintética (SAR) e Análise de 

Imagens Baseada e Objeto (OBIA) tem se tornado tendências importantes. Sensores SAR 

(Sentinel-1, por exemplo) operam na faixa de micro-ondas e conseguem penetrar nuvens, 

fornecendo dados sobre a estrutura e textura da floresta que complementam as informações 

ópticas. Já a técnica OBIA é indicada para imagens de alta resolução, pois classifica a imagem 

com base na forma e textura de conjunto de árvores, ao invés do pixel isolado. 

Essas tecnologias, aliadas às plataformas de processamento de nuvem, como o GEE, e 

algoritmos de aprendizado de máquina, como o Random Forest, aumentam consideravelmente 

as possibilidades de monitoramento, permitindo análises mais rápidas, precisas e em larga 

escala. 
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3 MATERIAIS E MÉTODOS 

Este capítulo detalha a abordagem metodológica adotada para o mapeamento das áreas 

de manguezal e cobertura do solo no município de Conde, Bahia. A estrutura da pesquisa foi 

organizada para integrar técnicas avançadas de sensoriamento remoto, processamento em 

nuvem e inteligência artificial. Inicialmente, apresenta a caracterização da área de estudo e a 

justificativa para sua seleção. Em seguida, é descrito os dados orbitais utilizados e o fluxo de 

de processamento dividido em três etapas principais: (1) aquisição e pré-processamento no 

GEE; (2) cálculo de índices espectrais e classificação supervisionada; (3) pós-processamento e 

validação estatística dos resultados. Por fim, são detalhados os procedimentos de amostragem 

e validação de campo que garantiram a confiabilidade do produto final. 

3.1 ÁREA DE ESTUDO: CARACTERIZAÇÃO DA ÁREA LITORÂNEA DE CONDE - 

BAHIA  

A área de estudo (Figura 4) abrange o ecossistema de manguezal e suas áreas 

circundantes na área litorânea do município de Conde, Bahia. Localizado no litoral norte, o 

município está a aproximadamente 180 km da capital, Salvador. Seus limites territoriais são: 

ao norte com Jandaíra, ao sul com Esplanada, a oeste com Rio Real e a leste com o Oceano 

Atlântico. 

Figura 4 - Mapa de localização da área de estudo. 

 

Fonte: DNIT, 2016; SEI, 2017; INEMA; 2019; Base Maxar/Google. Elaborado pelo autor (2025). 
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A escolha da área é relevante, pois o estado da Bahia é um dos principais espaços com 

presença de vasta extensão de manguezal no Brasil, evidenciando a importância do 

mapeamento (DINIZ et al., 2019). No entanto, a importância do mapeamento está justamente 

na vulnerabilidade deste ecossistema. Por mais que os manguezais sejam cruciais para a 

proteção costeira e o sequestro de carbono (TRAN et al., 2022), a sua integridade na Bahia tem 

sido ameaçada por intensa pressão antrópica. Mapear e identificar áreas de supressão é uma 

tarefa prioritária para a gestão costeira no estado. 

A área litorânea do município de Conde está inserida na Área de Proteção Ambiental 

(APA) Litoral Norte, criada em 1992 com o objetivo de disciplinar e proteger a biodiversidade 

local (SOUZA et al., 2024). Apesar de seu status de conservação, a região enfrenta pressões 

significativas decorrentes de dinâmicas socioeconômicas. Estudos recentes indicam que houve 

uma transformação contínua da paisagem costeira entre 1985 e 2022, caracterizada pela 

supressão de formações florestais nativas em favor da expansão da pastagem, silvicultura 

(eucalipto) e de mosaicos de uso agropecuário (SOUZA et al., 2024). Além disso, a 

infraestrutura turística e a expansão urbana, impulsionadas pela rodovia BA-099 (Linha Verde), 

atuam como vetores de alteração ambiental que ameaçam a integridade de ecossistemas 

sensíveis, como manguezais, dunas e apicuns (SOUZA et al., 2024). 

3.2 DADOS UTILIZADOS (IMAGENS SENTINEL-2) 

O estudo utilizou dados do satélite Sentinel-2 da missão Copernicus, especificamente o 

produto processado em Nível-2A (Level-2A). Essa coleção fornece dados de correção 

atmosférica aplicada, entregando valores de Reflectância de Superfície (Botton-of-Atmosphere 

- BOA), o que garante maior fidelidade aos alvos mapeados ao remover os efeitos de 

espalhamento e absorção da atmosfera. O sensor MultiSpectral Instrument (MSI) tem a 

capacidade de captar informações em 13 bandas espectrais, porém o estudo se concentrou nas 

bandas de maior resolução (10 e 20 metros), sendo de maior relevância para a classificação e 

cálculo dos índices espectrais (GHORBANIAN et al., 2021). 

Portanto, para a construção do Mosaico Anual de Mediana foram selecionadas as 

seguintes bandas: B2 (Azul), B3 (Vermelho), B4 (Verde), B8 (NIR),  B11 (SWIR 1) e B12 

(SWIR 2). 

 

 



23 

 

3.3 ESTRUTURA METODOLÓGICA EM TRÊS ETAPAS 

3.3.1 Etapa 1: Pré-Processamento e Geração do Mosaico Anual de Mediana 

A Figura 5 apresenta o fluxograma das etapas metodológicas percorridas neste estudo, 

ilustrando o fluxo de trabalho desde a aquisição do mosaico anual na plataforma GEE, passando 

pelo processamento digital no QGIS, até a elaboração do produto final. 

 

Figura 5 - Fluxograma das Etapas Metodológicas do Mapeamento. 

 

Fonte: Elaborado pelo autor (2025).  

 

O processo de aquisição das imagens e geração do mosaico foi inteiramente realizado 

no GEE, devido a sua capacidade de processar grandes volumes de séries temporais e 

automatizar tarefas repetitivas, fator crucial em estudos de SR (GHORBANIAN et al., 2021). 

Todo o procedimento de codificação e os parâmetros utilizados para a automação deste 

processo encontram-se detalhados no Apêndice A.  

O período escolhido para aquisição das imagens se deu através de testes no GEE a partir 

do ano de 2020. O intervalo em que se teve o resultado mais satisfatório no que tange a 

disponibilidade de dados e cobertura total da área de estudo foi o ano de 2023. Dentro do script 

(Apêndice A), as imagens foram filtradas para remover cenas com porcentagem de nuvens 

superior a 5%. Após isso, foi aplicada uma máscara de nuvens rigorosa a cada cena restante, 

com o intuito de eliminar pixels contaminados por nuvens e sombras. 
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No passo seguinte, foi utilizado um redutor de mediana em toda a coleção anual para 

gerar uma única imagem mosaico. O uso da mediana minimiza o ruído, pixels muito escuros 

ou muito claros e, principalmente, soluciona o problema da influência da flutuação da maré ao 

longo do ano (DINIZ et al., 2019; GHORBANIAN et al., 2021). 

A finalização do processo de geração do mosaico acontece com o recorte utilizando o 

polígono da área de estudo, a sua reprojeção para o sistema de coordenadas planas SIRGAS 

2000 UTM 24S (EPSG: 31984) e resolução espacial de 10 metros, feita a partir de uma técnica 

de Reamostragem (Resampling) na plataforma GEE, para garantir que todas as bandas de um 

mesmo sensor tenham o mesmo tamanho de pixel antes de serem combinadas (GHORBANIAN 

et al., 2021). O produto final é exportado para o QGIS. 

Para garantir que o algoritmo RF aprendesse a distinção entre as diferentes formas de 

cobertura com eficácia, foram definidas oito classes de uso e cobertura do solo: (1) Manguezal, 

(2) Área Alagada, (3) Corpo D’água, (4) Agropecuária, (5) Vegetação, (6) Solo Exposto, (7) 

Área Antropizada e (8) Areia. A coleta dos polígonos de referência (amostras) para as oito 

classes foi realizada a partir da fotointerpretação visual do Stack multi-banda, com auxílio de 

imagens de altíssima resolução do Google Earth Pro. 

Ao todo, foram coletados 407 polígonos de amostra, abrangendo uma área total de 

aproximadamente 230 hectares distribuída entre as oito classes mapeadas. A distribuição 

quantitativa detalhada do número de polígonos e da área amostrada para cada classe está 

descrita na Tabela 1.  

 

Tabela 1 - Dados quantitativos dos polígonos de amostragem. 

 

Fonte: Elaborado pelo autor (2025). 
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3.3.2 Etapa 2: Processamento e Classificação (Engenharia de Features e Machine 

Learning) 

Após o download do Mosaico Anual de Mediana, a etapa de engenharia de features foi 

realizada no QGIS para aumentar o poder discriminatório do classificador (SHEN et al., 2023). 

O processo envolveu o cálculo de dois índices espectrais (NDVI e MNDWI) e o empilhamento 

(stacking) das camadas. O NDVI foi calculado usando as bandas do Vermelho (B4) e do NIR 

(B8). Este índice amplifica a diferença entre a alta absorção de clorofila no Vermelho e a alta 

reflectância no NIR, sendo o índice mais amplamente usado na identificação de manguezais 

(TRAN et al., 2023). Para o cálculo do MNDWI, foram usadas as bandas do Verde (B3) e do 

SWIR 1 (B11). Este índice tem a intenção de auxiliar na diferenciação do manguezal das áreas 

alagadas ao realçar a absorção da água e umidade (SHEN et al., 2023). 

O processo de Stacking empilhou as 6 bandas brutas do mosaico (B2, B3, B4, B8, B11 

e B12) com 2 índices calculados (NDVI e MNDWI), para gerar um único arquivo multi-banda 

(Stack), totalizando 8 camadas de informações para o classificador RF. 

Por fim, o processamento da classificação supervisionada foi executado através do 

complemento Dzetsaka Classification Tool, contido no QGIS. O algoritmo RF, então, foi 

alimentado com as amostras de treinamento e o Stack, dando origem ao produto raster 

preliminar de uso e cobertura da área de estudo.  

3.3.3 Etapa 3: Pós-Processamento e Validação 

A etapa final consistiu no refinamento do produto raster e na validação estatística dos 

resultados. Após a classificação preliminar gerada pelo algoritmo RF, foi aplicado um filtro de 

pós-processamento denominado Sieve. Este procedimento tem o objetivo de reduzir o efeito 

“sal e pimenta”, comum em classificações dessa natureza. A ideia é remover polígonos soltos 

com área pouco expressiva, sendo substituída pelo vizinho dominante. Essa técnica é 

fundamental para garantir a continuidade espacial das classes mapeadas e a consistência visual 

do produto final (DINIZ et al., 2019). 

A validação da acurácia foi realizada através do complemento AcATaMa (Accuracy 

Assessment of Thematic Maps), utilizando o método de amostragem aleatória estratificada. 

Foram gerados 1.650 pontos de verificação, distribuídos proporcionalmente entre as 8 classes. 

A métrica de desempenho se baseou na construção de uma Matriz de Confusão, a partir da qual 
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foram calculados a Acurácia Global, o Coeficiente de Kappa e as acurácias do Produtor (erros 

de omissão) e do Usuário (erros de comissão). 

3.4 AMOSTRAGEM DE REFERÊNCIA E VALIDAÇÃO DE CAMPO 

A construção da base de dados de referência (verdade de campo) para o treinamento do 

algoritmo e para validação da acurácia foi feita através da combinação da interpretação visual 

de imagens orbitais com verificações in loco. Diante da extensão da área de estudo e das 

dificuldades de acesso ao manguezal e áreas alagadas, a coleta primária de amostras baseou-se 

na fotointerpretação em escritório. Foi utilizado como verdade terrestre as imagens de altíssima 

resolução espacial da plataforma Google Earth Pro, em datas próximas ao ano de 2023. Essa 

técnica foi fundamental para diferenciar alvos que possuem respostas espectrais semelhantes. 

Entre o período de 19 e 22 de novembro de 2025, foi realizada uma expedição para a 

área de estudo, para validação de campo. Foram percorridos pontos estratégicos de acesso 

público e áreas de transição entre manguezal, áreas alagadas, corpos d’água,  vegetação e áreas 

antropizadas, principalmente. Durante a visita, foram realizados registros fotográficos 

georreferenciados para documentar a fisionomia real das classes mapeadas. As fotografias 

serviram para refinar as amostras que geraram dúvidas e para, ao final do processo, validar a 

acurácia da classificação. 
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4 RESULTADOS E DISCUSSÕES 

Neste capítulo, são apresentados e discutidos os produtos resultantes da aplicação da 

abordagem metodológica baseada no processamento em nuvem e aprendizado de máquina para 

o mapeamento da área litorânea do município de Conde, Bahia. A integração de dados 

multiespectrais do Sentinel-2A com o algoritmo Random Forest permitiu a geração de um 

modelo de classificação robusto, capaz de diferenciar a complexa paisagem litorânea. 

A apresentação dos dados é iniciada com a validação dos pontos que geraram dúvida 

durante o processo de construção dos polígonos de amostragem, agrupados numa sequência de 

fotografias retiradas na expedição de campo. Após isso, é feita a análise de como os índices 

espectrais contribuíram para a distinção entre as classes amostrais de uso e cobertura definida. 

Na sequência, são detalhados os resultados estatísticos da matriz de confusão para a 

classificação do Mosaico Anual de Mediana, seguido pela apresentação do mapeamento final 

da cobertura de manguezal e áreas adjacentes. Por fim, é realizada a análise comparativa entre 

estratégias de processamento. Serão confrontados os resultados obtidos entre a classificação 

supervisionada utilizando o RF para o Mosaico Anual e Mediana e para uma cena única do 

Sentinel-2A, datada de abril de 2023. 

4.1 VALIDAÇÃO DOS PONTOS EM CAMPO 

A etapa de validação de campo foi fundamental para confirmar a interpretação visual 

realizada no escritório e atestar a veracidade das classes mapeadas. A distribuição espacial dos 

pontos de campo é apresentada na Figura 6, utilizando como base a imagem de alta resolução 

do Google Earth Pro. Em seguida, na Figura 7, para que se possa compará-los, os mesmos 

pontos foram colocados sob a classificação supervisionada do Mosaico Anual de Mediana. Os 

pontos estão localizados ao longo da estrada de terra que liga os povoados de Sítio e Poças.  
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Figura 6 - Mapa de localização dos pontos de validação de campo na área litorânea de Conde, Bahia. 

 

Fonte: Pontos coletados em campo; Base Imagem Maxar/Google. Elaboração do autor (2025). 

 

Figura 7 - Localização dos pontos de validação na classificação do Mosaico Anual de Mediana. 

 

Fonte: Elaboração do autor (2025). 
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O ponto 1 indica área pecuária extensiva, caracterizada por pastagem (Figura 8). No 

mapeamento essa área foi associada à classe agropecuária, confirmando a capacidade do 

modelo em distinguir áreas de manejo antrópico na vegetação natural adjacente. No ponto 2, 

observa-se a presença de vegetação de restinga, típica de áreas arenosas costeiras (Figura 9). A 

classificação deste ponto como vegetação valida a distinção espectral realizada pelo NDVI entre 

a restinga e o manguezal. A fotografia do ponto 3 confirma a presença de um corpo hídrico 

superficial  (Figura 10). A correta identificação deste alvo como corpo d’água atesta a 

sensibilidade do índice MNDWI em detectar água, mesmo que em pequenas extensões. O ponto 

4 de verificação recai sobre uma extensa área de pecuária com área alagada ao fundo (Figura 

11). O registro do ponto 5 evidencia um bosque de mangue com e sem vegetação (Figura 12). 

Para finalizar, o ponto 6 documenta uma área de areal com a presença de coqueiros (Figura 13). 

Esta feição mista é um desafio para os classificadores. A verificação in loco permite 

compreender a resposta espectral mista (brilho da areia e a vegetação do coqueiral), sendo 

fundamental para avaliar se o modelo priorizou a classe areia ou agropecuaria. 
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Figura 8 - (1) Campo de pecuária. 

 

Fonte: Acervo fotográfico de campo (2025) 
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Figura 9 - (2) Vegetação de restinga. 

 

Fonte: Acervo fotográfico de campo (2025). 
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Figura 10 - (3) Corpo d’água. 

  

Fonte:  Acervo fotográfico de campo (2025). 
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Figura 11 - (4) Área de pecuária com área alagada ao fundo. 

 

Fonte: Acervo fotográfico de campo (2025). 
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Figura 12 - (5) Manguezal com raízes expostas. 

 

Fonte: Acervo fotográfico de campo (2025). 
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Figura 13 - (6) Areal e presença de coqueiros. 

 

Fonte: Acervo fotográfico de campo (2025). 

4.2 ANÁLISE DAS CLASSES DE COBERTURA E DESEMPENHO DOS ÍNDICES 

ESPECTRAIS 

A aplicação da metodologia de classificação supervisionada resultou na identificação 

do mapeamento de oito classes temáticas de uso e cobertura do solo na área litorânea do 

município de Conde, Bahia. A definição das classes permitiu uma representação da 
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heterogeneidade da paisagem, conseguindo capturar desde os ecossistemas naturais prioritários, 

como o manguezal, até áreas de grande pressão antrópica. 

A eficácia na distinção dessas categorias foi possível, principalmente, pela integração 

das bandas espectrais do satélite Sentinel-2A com os índices NDVI e MNDWI. A análise visual 

e estatística das amostras de treinamento mostrou que cada índice desempenhou um papel 

específico na separação dos alvos. 

O NDVI se comportou como um discriminador primário entre superfícies vegetadas e 

não vegetadas. As classes de manguezal, vegetação (nativa terrestre) e agropecuária apresentam 

valores altos para este índice, refletindo a presença de biomassa fotossintetizante ativa. Por 

outro lado, as classes de corpo d’água e áreas alagadas exibem valores mais baixos ou negativos, 

permitindo uma primeira separação macro da paisagem. Esse resultado dialoga com a literatura, 

que aponta o NDVI como o índice mais utilizado na detecção de vegetação em ambientes 

costeiros (TRAN et al., 2022). 

No entanto, o desafio deste estudo estava justamente na separação espectral entre o 

manguezal e as demais formações vegetais, bem como na distinção entre ambientes aquáticos 

e áreas alagadas. Para ultrapassar as limitações do NDVI, o desempenho do MNDWI foi crucial. 

A incorporação da banda SWIR no cálculo do MNDWI permitiu realçar os valores de absorção 

da umidade características dos ecossistemas de manguezal. 

Foi observado que a classe de manguezal apresentou uma assinatura espectral singular 

quando comparada a vegetação terrestre: altos valores de NDVI e baixos valores de MNDWI. 

Esse padrão ocorre devido à forte absorção da radiação SWIR pela água presente no substrato 

lamoso e no próprio dossel do mangue, característica que não é tão evidente na cobertura 

vegetal terrestre (SHEN et al., 2023). A variável chave para distinguir a classe de área alagada 

da classe de corpos d’água foi o MNDWI, evidenciando a sensibilidade deste índice para 

mapear a paisagem complexa da interface terra-água (DINIZ et al., 2019). 

A caracterização espectral e a definição das classes mapeadas estão descritas no Quadro 

1, que relaciona cada classe ao seu comportamento nos índices utilizados. As informações 

foram montadas a partir da análise sob a coleta manual dos valores espectrais dos píxels 

associados a sua respectiva classe. 
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Quadro 1 - Caracterização das classes de uso e cobertura do solo e o comportamento espectral predominante. 

Classe Descrição  Comportamento 

Espectral 

1 - Manguezal Formações florestais de 

dossel denso em zonas de 

entre-marés, ao longo de 

estuários e canais. 

NDVI alto / MNDWI 

baixo (ou negativo). Forte 

absorção no SWIR devido à 

umidade. 

2 - Área Alagada Zonas de transição, lama 

exposta e vegetação 

herbácea em solo saturado. 

NDVI baixo a médio / 

MNDWI variável. Valores 

de MNDWI superiores aos 

do manguezal, mas 

inferiores aos da água pura. 

3 - Corpo D’água Rios, canais de maré, 

lagoas e oceano. 
NDVI muito baixo (ou 

negativo) / MNDWI alto. 

Alta absorção no NIR e 

SWIR. 

4 - Agropecuária Áreas de cultivo agrícola 

(coco, por exemplo) e 

pastagens. 

NDVI alto / MNDWI 

médio. Padrão geométrico 

regular, visível na textura. 

5 - Vegetação Remanescentes de mata 

atlântica, restinga arbórea e 

vegetação secundária de 

terra firme. 

NDVI alto / MNDWI 

médio. Menor absorção no 

SWIR comparado ao 

manguezal. 

6 - Solo Exposto Áreas desmatadas e solo 

nu, sem cobertura vegetal 

significativa. 

NDVI baixo / MNDWI 

baixo. Alta reflectância em 

todas as bandas do visível. 

7 - Área Antropizada Núcleos urbanos, 

edificações e infraestrutura 

viária. 

NDVI baixo / MNDWI 

baixo. Alta textura e 

heterogeneidade espectral. 

8 - Areia Praias, dunas e bancos de 

areia ao longo da linha de 

costa 

NDVI baixo / MNDWI 

baixo. Altíssima 

reflectância (brilho) no 

visível. 

Fonte: Elaborado pelo autor (2025). 
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4.3 RESULTADOS DA CLASSIFICAÇÃO RANDOM FOREST 

O processamento digital das imagens Sentinel-2A através do algoritmo RF resultou em 

uma classificação bem-sucedida da área de estudo. A aplicação do modelo alimentado pelo 

Stack de bandas e índices espectrais, com destaque para a utilização do mosaico anual de 

mediana, demonstrou alta capacidade de generalização, entregando um mapa temático coerente 

a partir de uma área de estudo com paisagens complexas. 

A validação estatística do modelo, realizada através da matriz de confusão gerada a 

partir de 395 pontos de verificação independentes (amostragem aleatória estratificada), atestou 

a robustez dos resultados. A classificação alcançou uma Acurácia Global (OA) de 92,41% e 

um Coeficiente de Kappa de 0,89. 

Com a finalidade de fornecer uma análise detalhada e transparente da performance do 

algoritmo, os resultados da validação estatística foram divididos em três tabelas. A Tabela 2 

apresenta a matriz de confusão completa do Mosaico Anual de Mediana. A Tabela 3 detalha as 

métricas de acurácia do Usuário e do Produtor para cada classe. Por fim, a Tabela 4 traz os 

índices de desempenho global do modelo. 

 

Tabela 2 - Matriz de confusão da Classificação Supervisionada (Random Forest). 

 

Fonte: AcATaMa. Elaborado pelo autor (2025). 
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Tabela 3 - Métricas de Acurácia por Classe (Usuário e Produtor). 

 

Fonte: AcATaMa. Elaborado pelo autor (2025). 

 

 

Tabela 4 - Métricas de Desempenho Global 

 

Fonte: AcATaMa. Elaborado pelo autor (2025). 

  

A interpretação desses indicadores confirma a eficácia da metodologia adotada, com 

destaque para a classe de manguezal, que atingiu a Acurácia do Produtor de 100%. De acordo 

com a escala de classificação Landis e Koch (1977), um valor de Kappa superior a 0,8 (80%) 

representa um nível de concordância “Excelente” entre o mapa gerado e a verdade de campo. 

Ao comparar esses resultados com a literatura recente, é possível observar que os 

resultados estão alinhados com as métricas obtidas em estudos que utilizam abordagens 

semelhantes. O trabalho de Ghorbanian et al. (2021), que serviu de referência metodológica 

para este trabalho, indicou uma Acurácia Global média de 93,23% no mapeamento de 

ecossistema de manguezal usando dados Sentinel-2 e Random Forest. De maneira semelhante, 

Shen et al. (2023) obtiveram acurácias próximas a 93% ao combinar dados ópticos e índices 

espectrais. A proximidade entre o resultado obtido neste estudo (92,41%) e esses trabalhos de 

referência, valida a consistência técnica da aplicação do algoritmo na área de estudo. 

A alta performance do classificador por ser atribuído a dois fatores principais 

identificados durante a análise. O primeiro seria a robustez do algoritmo, em que o RF 

confirmou sua habilidade em lidar com muitas variáveis sem se ajustar excessivamente aos 
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exemplos iniciais, como destacado por Rodrigues et al. (2023) em estudos na costa do Rio de 

Janeiro. O segundo fator está na qualidade do Stack que, ao incluir os índices espectrais, 

permitiu ao algoritmo a capacidade de discriminar classes espectralmente complexas com maior 

efetividade, reduzindo a confusão global do modelo (TRAN et al., 2022). 

4.4 MAPEAMENTO DA COBERTURA DE MANGUEZAL NA ÁREA LITORÂNEA DE 

CONDE, BAHIA 

O produto da classificação permitiu a produção de um mapa de uso e cobertura do solo 

para a área litorânea de Conde, Bahia, do ano de 2023, representado na Figura 14. 

 

Figura 14 - Mapa produto da classificação supervisionada de uso e ocupação do solo da área litorânea do 

município de Conde, Bahia. 

 

Fonte: Elaborado pelo autor (2025). 

 

O produto evidencia a concentração de manguezal predominantemente nos estuários dos 

rios Itapicuru e das Pontes, bem como nas zonas de influência entre-marés nos rios secundários 

e canais de drenagem. A qualidade do mapeamento, especificamente para a classe de 

manguezal, foi verificada de duas formas complementares: a comparação visual com imagens 

de alta resolução (Google Earth Pro) e validação de campo. 
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Na figura 15 foi realizado o comparativo entre o recorte de duas áreas de mangue com 

suas respectivas imagens de alta resolução. Observa-se na imagem que o classificador 

conseguiu distinguir com qualidade as bordas do manguezal com os corpos d’água e áreas 

alagadas. A presença de vetores de pressão, como agropecuária e área antropizada, também é 

evidenciada com clareza no ecossistema estuarino, demonstrando a sensibilidade do modelo às 

mudanças de uso do solo. 

 

Figura 15 - Recorte da classificação supervisionada comparada à imagem de alta resolução. Os pontos (a) e (b) 

indicam os locais de verificação in loco detalhados na sequência. 

 

Fonte: Elaborado pelo autor (2025). 

 

Para contribuir com a acurácia dos resultados da classificação e validar a interpretação 

visual, os registros fotográficos obtidos in loco foram utilizados para confirmar se as bordas e 

as tipologias foram corretamente distinguidas. O ponto (a) localiza-se ao longo do rio Itapicuru, 

sob o ponto de vista de uma embarcação, orientado para registrar um terreno de plantação de 

coco, cortando abruptamente a paisagem de manguezal. O ponto (b) localiza-se no povoado de 

Siribinha, sob o ponto de vista de um cais, registrando área alagada na 1ª porção da imagem, 

vegetação rasa de mangue na 2ª porção, além do rio e vegetação densa de mangue na porção 

final da imagem. A validação de campo é essencial aqui para confirmar que o equívoco na 

cobertura vegetal não é um erro de omissão do manguezal, mas sim uma feição natural do 
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ecossistema que o modelo conseguiu discriminar corretamente como uma zona úmida não 

florestada. 

A seguir, são apresentados os registros de campo das áreas de pressão antrópica (Figura 

16), zona úmida não vegetada de manguezal e área alagada (Figura 17) e de manguezais 

preservados ao longo do rio Itapicuru (Figura 18). 

 

Figura 16 - Uso antrópico consolidado em áreas de manguezal ao longo do rio Itapicuru. 

 

Fonte: Acervo fotográfico de campo (2025). 
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Figura 17 - Zona úmida não florestada localizada em Siribinha. 

 

Fonte: Acervo fotográfico de campo (2025). 
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Figura 18 - Manguezal preservado ao longo do rio Itapicuru. 

 

Fonte: Acervo fotográfico de campo (2025). 

4.5 ANÁLISE E DISCUSSÃO DA ACURÁCIA POR CLASSE 

A análise das métricas de Acurácia do Produtor e do Usuário mostra a capacidade do 

modelo em diferenciar alvos específicos dentro da área litorânea de Conde, que se mostrou 

bastante complexa. Embora a Acurácia Global tenha sido elevada (92,41%), o desempenho 

entre as classes variou, refletindo algumas limitações do sensoriamento remoto óptico. 
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O destaque principal do estudo foi o desempenho na classificação do manguezal. O 

modelo atingiu a Acurácia do Produtor de 100%, indicando erro de omissão nulo. Isso significa 

que o algoritmo foi capaz de identificar quase toda a área de manguezal na região. Em paralelo, 

a Acurácia do Usuário de 96,88% mostra um erro baixo de comissão (3,12%), confirmando que 

a confusão em outras classes de vegetação foi pequena. Esse resultado valida a hipótese de que 

a banda do infravermelho de ondas curtas (SWIR) e o índice MNDWI são determinantes para 

separar a vegetação de mangue da vegetação terrestre, assim como foi apontado por SHEN et 

al. (2023). 

As classes de vegetação e agropecuária também apresentaram desempenho excelente, 

com Acurácias do Produtor de 97,65% e 95,85%, respectivamente. O índice NDVI mostrou 

grande eficácia na distinção entre essas classes vegetadas e as áreas antropizadas. 

No entanto, é importante ressaltar uma limitação amostral observada nas classes de 

menor representatividade territorial, especificamente para solo exposto e areia. Devido à 

reduzida extensão dessas classes no produto final classificado, a amostragem aleatória 

estratificada gerou um número insuficiente de pontos de verificação para estas classes. A baixa 

distribuição de amostras de validação para essas categorias resulta em métricas de acurácia 

baixas ou nulas (0% para solo exposto e 33,33% para areia), já que qualquer erro pontual 

impacta significativamente na porcentagem. Contudo, essa limitação estatística não 

compromete a Avaliação Global do modelo, que se sustenta pela alta densidade amostral nas 

classes predominantes e no alvo principal do estudo. 

A classe de corpo d’água apresentou comportamento distinto: obteve Acurácia do 

Produtor de 100% (não houve omissão de água), mas Acurácia de Usuário de 77,78%, 

indicando erros de comissão onde áreas de solo muito úmido foram classificadas como água, 

uma confusão espectral esperada em zonas de transição de maré (DINIZ et al., 2019).  

Por fim, a classe de área antropizada apresentou Acurácia de Usuário de 87,50%, mas 

uma Acurácia de Produtor de 58,33%. O Erro de Omissão nessa classe indica que algumas áreas 

urbanas pouco intensas foram confundidas com solo exposto ou agropecuária. Isso ocorre por 

conta da heterogeneidade espectral dos adensamentos urbanos e ao efeito de suavização do 

redutor de mediana, que pode mesclar a resposta espectral de edificações pequenas com o 

entorno vegetado em imagens com resolução espacial de 10 metros (GHORBANIAN et al., 

2021). 
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4.6 ANÁLISE COMPARATIVA DE ESTRATÉGIAS DE MAPEAMENTO: CENA ÚNICA 

E MOSAICO ANUAL DE MEDIANA 

Com o objetivo de testar a metodologia proposta diante dos desafios de mapear áreas 

costeiras, foi realizado um experimento comparativo entre dois tipos de dados de entrada. O 

objetivo foi avaliar se o uso do Mosaico Anual de Mediana traz resultados estatisticamente 

superiores ao uso tradicional de uma única imagem de data específica. 

A estratégia comparativa utilizou apenas uma cena do Sentinel-2A, datada de 

20/04/2023. Essa data foi escolhida por apresentar as melhores condições de visibilidade na 

área de estudo. No entanto, como é comum no litoral, a imagem continha algumas nuvens e, 

evidentemente, sombras. Para corrigir isso e evitar que o classificador confunda nuvens com 

areia ou solo, foi necessário acrescentar uma camada extra denominada “nuvem/sombra”, 

totalizando nove camadas de amostragem. 

A seguir, são apresentados os resultados de acurácia de cada método através das Tabelas 

5 a 8, finalizando com uma comparação para definir qual estratégia identifica melhor o 

ecossistema de manguezal em Conde, Bahia. 
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Tabela 5 - Matriz de Confusão da cena única e do Mosaico Anual de Mediana. 

 

Fonte: AcATaMa. Elaborado pelo autor (2025). 

 

Tabela 6 - Desempenho Global da cena única e do Mosaico Anual de Mediana. 

 

Fonte: AcATaMa. Elaborado pelo autor (2025). 
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Tabela 7 - Acurácia do Produtor da cena única e do Mosaico Anual de Mediana. 

 

Fonte: AcATaMa. Elaborado pelo autor (2025). 

 

Tabela 8 - Acurácia do Usuário da cena única e do Mosaico Anual de Mediana 

 

Fonte: AcATaMa. Elaborado pelo autor (2025). 

 

Em termos de desempenho global, a classificação baseada em cena única apresentou 

uma Acurácia Global ligeiramente superior, chegando a 93,67%, em comparação aos 92,41% 

do Mosaico Anual de Mediana. Esse resultado sugere que, para a distinção geral da paisagem, 

a radiometria instantânea de uma imagem única preserva texturas e contrastes que podem ser 

suavizados no processo de mediana anual. 

Contudo, ao analisar a classe de manguezal, a estratégia do Mosaico Anual de Mediana 

demonstrou ser superior em termos de sensibilidade. Enquanto a cena única obteve uma 

Acurácia do Produtor de 97,06%, o Mosaico Anual atingiu 100% de Acurácia do Produtor. Isso 

indica que a composição anual foi extremamente eficaz em anular a influência da variação do 

nível de maré, garantindo que nenhuma área de manguezal fosse omitida por estar 
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momentaneamente submersa ou sombreada, um problema recorrente em imagens de data única 

(GHORBANIAN et al., 2021). 

Por outro lado, a cena única apresentou uma Acurácia de Usuário perfeita (100%) para 

o manguezal, enquanto o Mosaico Anual apresentou uma leve confusão (96,88%), classificando 

equivocadamente uma pequena fração de área alagada como manguezal. Essa diferença, por 

mais que sútil, corrobora com estudos que apontam que os índices baseados em séries temporais 

maximizam a detecção de zonas úmidas, mas podem, ocasionalmente, incluir áreas de transição 

muito úmidas na classe de vegetação (DINIZ et al., 2019; SHEN et al., 2023). 

Outro ponto divergente foi o desempenho nas classes de substrato exposto. O mosaico 

anual teve dificuldades em classificar corretamente solo exposto e areia, com Acurácia do 

Produtor nula ou baixa), provavelmente por conta da variabilidade espectral causado por 

mudanças de umidade ao longo do ano. Já a cena única consegue capturar o momento exato e, 

portanto, tenderia a discriminar melhor essas feições. Porém, é fundamental ressaltar 

novamente que o método de estratificação aleatória do AcATaMa não gerou pontos de validação 

suficientes dessas classes de solo por conta da sua pequena extensão territorial. 

Portanto, embora a cena única ofereça uma precisão global levemente maior, o Mosaico 

Anual de Mediana se mostrou uma estratégia mais segura para o mapeamento de manguezais, 

evitando o risco de omissão (falsos negativos) causado por marés altas, por exemplo, e 

garantindo um produto final livre de ruídos atmosféricos. 
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5 CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES 

A presente pesquisa atingiu seu objetivo central ao reproduzir e validar uma 

metodologia eficaz para o mapeamento do ecossistema de manguezal na área litorânea do 

município de Conde, Bahia. A integração do processamento de nuvem via Google Earth Engine 

(GEE) com o algoritmo de aprendizado Random Forest provou ser uma estratégia robusta, 

superando os desafios clássicos do monitoramento em regiões costeiras, como o excesso de 

nuvens e a influência da variabilidade da maré. 

A análise confirmou que o uso do Mosaico Anual de Mediana do satélite Sentinel-2A, 

combinada com os índices espectrais (NDVI e MNDWI), elevou a discriminação espectral. O 

índice MNDWI, particularmente, mostrou ser fundamental para a separação precisa entre 

manguezal e as formações florestais terrestres, resolvendo uma das principais dificuldades 

apontadas na literatura. 

Os resultados estatísticos obtidos indicam uma alta confiabilidade ao produto 

cartográfico gerado. Com Acurácia Global de 92,06% e um Coeficiente de Kappa de 88%, o 

modelo alcançou um nível de excelência comparável aos estudos revisados aqui. Destaque para 

o desempenho na classificação de manguezal, que obteve Acurácia do Produtor superior a 99%, 

indicando que a metodologia foi capaz de identificar a quase totalidade do ecossistema na área 

de estudo. 

Entretanto, apesar da elevada Acurácia Global obtida, o estudo apresenta limitações que 

devem ser consideradas nas interpretações dos resultados. Foi identificada uma fragilidade na 

identificação dos vetores de pressão antrópica, evidenciada pela Acurácia do Produtor de 

58,33% para a classe de área antropizada. Esse resultado indica que o modelo falhou em detectar 

quase metade das superfícies edificadas, possivelmente devido à resolução espacial de 10 

metros do Sentinel-2 e à tendência do redutor de mediana em suavizar feições urbanas em 

pequena escala. Para o refinamento do modelo, é sugerido que, em reproduções futuras, seja 

feita a coleta de uma quantidade maior de amostras para classes de baixa representatividade, 

como solo exposto e areia, cujas acurácias individuais foram comprometidas pela baixa 

densidade amostral. 

De maneira adicional, vale ressaltar a limitação no que se refere ao processo de 

validação estatística executado via plugin AcATaMa. A utilização de imagens da plataforma 

Google Earth Pro como verdade terrestre apresentou grandes desafios, uma vez que estas 

consistem em mosaicos temporais mesclados que nem sempre disponibilizam a cena mais 
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atualizada ou sincronizada com o período exato do mapeamento (2023). Essa discrepância 

temporal pode introduzir incertezas na comprovação da acurácia. 

Uma contribuição importante deste trabalho está na demonstração da viabilidade de 

integração entre dados ópticos e as perspectivas futuras de utilização de sensores ativos. A 

literatura reforça que a integração de dados de RADAR (Sentinel-1), constitui-se no próximo 

passo lógico para o aprimoramento da técnica de monitoramento de manguezais. Sensores 

RADAR permitem a penetração na cobertura de nuvens e fornecem informações sobre a 

estrutura volumétrica da vegetação e textura do solo (GHORBANIAN et al., 2021), o que 

reduziria a confusão espectral dos alvos. A implementação dessas técnicas diretamente no 

ecossistema GEE, seja via JavaScript ou Python, permite a automação de fluxos de trabalho em 

larga escala, consolidando-se como uma ferramenta fundamental para o monitoramento 

ambiental costeiro. 

 

Portanto, para trabalhos futuros e o aprimoramento de técnicas de monitoramento 

costeiro, recomenda-se: 

1. Monitoramento temporal: Replicar esta metodologia em séries temporais históricas (a 

cada 5 ou 10 anos) para quantificar os valores de supressão ou regeneração de 

manguezal. 

2. Integração de dados RADAR (SAR): A inclusão de dados RADAR (Sentinel-1, por 

exemplo) no Stack de classificação para melhorar o poder discriminatório, como 

utilizado no estudo de Ghorbanian et al. (2021).  

3. Refinamento de classes de transição: Realizar estudos específicos para entender as 

respostas espectrais dos alvos que foram confundidos e aprimorar a quantidade e 

complexidade das classes escolhidas para a classificação. 

 

Conclui-se que a técnica de classificação supervisionada baseada em Machine Learning 

e Sentinel-2A é operacionalmente viável, gratuita e altamente precisa, apresentando-se como 

uma solução replicável para a gestão de ambientes costeiros tropicais. 
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APÊNDICE A – SCRIPT DE PROCESSAMENTO NO GEE  

/**  
 * SCRIPT: Geração de Mosaico Anual de Mediana - Sentinel-2 SR  
 * ÁREA DE ESTUDO: Conde-BA  
 * FINALIDADE: Processamento de imagens para classificação Random Forest  
 */  

  
// 1. Definição da Área de Interesse   
var aoi = ee.Geometry.Polygon([  
  [[-37.625, -12.075], [-37.585, -12.075], [-37.585, -12.035], [-37.625, -12.035]]  
]);  

  
// 2. Função para Máscara de Nuvens e Cirrus (Baseada na banda QA60)  
function maskS2clouds(image) {  
  var qa = image.select('QA60');  
    
  // Bits 10 e 11 são nuvens e cirrus, respectivamente.  
  var cloudBitMask = 1 << 10;  
  var cirrusBitMask = 1 << 11;  
    
  // Ambas as flags devem ser zero, indicando condições claras.  
  var mask = qa.bitwiseAnd(cloudBitMask).eq(0)  
      .and(qa.bitwiseAnd(cirrusBitMask).eq(0));  
    
  return image.updateMask(mask).divide(10000)  
      .copyProperties(image, ["system:time_start"]);  
}  

  
// 3. Importação da Coleção Sentinel-2 Level-2A (Correção Atmosférica BOA)  
var s2Collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")  
    .filterBounds(aoi)  
    .filterDate('2023-01-01', '2023-12-31') // Definir o ano de interesse  
    .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 5)) // Pré-filtro de nuvens  
    .map(maskS2clouds);  

  
// 4. Aplicação do Redutor de Mediana (Geração do Mosaico Anual)  
// A mediana reduz o impacto de outliers (nuvens residuais e sombras)  
var medianMosaic = s2Collection.median().clip(aoi);  

  
// 5. Seleção das Bandas de Estudo (Resoluções de 10m e 20m)  
var finalMosaic = medianMosaic.select(  
  ['B2', 'B3', 'B4', 'B8', 'B11', 'B12'], // Bandas originais  
  ['azul', 'verde', 'vermelho', 'nir', 'swir1', 'swir2'] // Renomeação opcional  
);  

  
// 6. Visualização no Mapa (Composição Cor Verdadeira)  
Map.centerObject(aoi, 13);  
Map.addLayer(finalMosaic, {bands: ['vermelho', 'verde', 'azul'], min: 0, max: 0.3}, 'Mosaico RGB');  

  
// 7. Exportação do Mosaico para o Google Drive com Projeção SIRGAS 2000 UTM 24S  
Export.image.toDrive({  
  image: finalMosaic,  
  description: 'Mosaico_Mediana_Siribinha_2023_SIRGAS2000',  
  scale: 10,  
  region: aoi,  
  maxPixels: 1e13,  
  crs: 'EPSG:31984', // Define a projeção SIRGAS 2000 / UTM zone 24S  



55 

 

  fileFormat: 'GeoTIFF'  
});  
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